

Daily Tutorial Sheet 4 Level – 1

46.(A) de-Broglie verified the dual nature of electron by justifying the quantization of angular momentum of electron in Bohr's orbit.

47.(D) From uncertainty principle

$$\Delta x \cdot \Delta p = \frac{h}{4\pi}$$
 \Rightarrow $\Delta x = \frac{6.634 \times 10^{-34}}{4 \times 3.14 \times 1 \times 10^{-5}} \approx 5.27 \times 10^{-30} \text{ m}$

- **48.(D)** K-shell contains only one sub-shell, i.e. s type sub-shell. It contains only one orbital which indicates two electrons can be placed with opposite spin. So, spin quantum number is different for s-sub-shell electrons.
- **49.(B)** Number of orbitals in a shell = $n^2 = 4^2 = 16$ orbitals & 4 subshells i.e. 4s, 4p, 4d, 4f
- **50.(A)** Calcium has Z = 20 \therefore $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$ Fourth shell is valence shell, so, 2 electrons are present.

51.(C) According to Hund's rule, degenerate orbitals are filled singly by same spin electron first, coupling start only after half filling by opposite spin electrons.

52.(B) Z = 28 for nickel

 $\begin{array}{ll} \textbf{53.(A)} & \lambda = \frac{h}{mv} = \frac{h}{\sqrt{2m\,K.E.}} \\ & \lambda_e = \frac{h}{\sqrt{2m_e \cdot 16E}} \; ; \; \lambda_p = \frac{h}{\sqrt{2 \times 1836\,m_e \cdot 4E}} \; ; \lambda_\alpha = \frac{h}{\sqrt{2 \times 4 \times 1836\,m_e \times E}} \\ & \text{(Since } m_\alpha \approx 4 \; m_p) \\ & \Rightarrow \qquad \lambda_e > \lambda_p > \lambda_\alpha \end{array}$

54.(B) Higher the value of $(n + \ell)$ higher is the energy of orbital. If $(n + \ell)$ values are same then the orbital having more value of n indicates higher energy level.

- **55.(A)** Radial nodes are given by $: n \ell 1$, so for 3s radial nodes = 3 0 1 = 2For 2s, radial nodes = 2 - 0 - 1 = 1
- **56. (B)** $r = 8.46 A^{\circ} = 0.53 \frac{n^2}{Z} A^{\circ}$ \Rightarrow n = 4Max. e^-s in $n = 4 \rightarrow 2n^2 = 32$
- **57.(B)** It is equal to principle quantum number (n). **58.(A)** learn the formula.
- **59.(C)** Value of ℓ for given n is 0 to (n-1) and value of m for given $\ell = -\ell$ to $+\ell$
- **60.(C)** For K(Z = 19) we have $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$ \therefore Outermost e^- is $4s^1$ $4, 0, 0, +\frac{1}{2}$ or $4, 0, 0, \frac{-1}{2}$.